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Stationary solutions and Neumann boundary conditions in the Sivashinsky equation
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New stationary solutions of the (Michelson) Sivashinsky equation of premixed flames are obtained numeri-
cally in this paper. Some of these solutions, of the bicoalescent type recently described by Guidi and Marchetti,
are stable with Neumann boundary conditions. With these boundary conditions, the time evolution of the
Sivashinsky equation in the presence of a moderate white noise is controlled by jumps between stationary

solutions.
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I. INTRODUCTION

The Sivashinsky equation [1] (or Michelson Sivashinsky
equation depending on the authors) is a well-established non-
linear equation which provides a satisfactory description of
the time evolution of premixed flames. Until working on the
present paper, the author had a very simple idea of the situ-
ation regarding this equation. Pole solutions of the Sivashin-
sky equation were obtained in Ref. [2] and popularized in
Ref. [3], which reduces the time evolution of the equation to
a dynamical system and the stationary solutions to finding
zeroes of a nonlinear function of several variables. The paper
[3] also shows that the poles have a tendency to coalesce,
i.e., to align vertically in the complex plane. Stationary so-
lutions were obtained in the form of coalescent solutions
with a number of poles depending on the width of the do-
main. It was shown analytically in Refs. [4,5] that each so-
lution, with a given number of poles, is linearly stable in a
given interval for the control parameter (either the domain
width or more often the curvature term with a domain width
fixed to 2r). Numerical simulations, however, always per-
formed with periodic boundary conditions, continue to show
that the solutions are extremely sensitive to noise [6] for
sufficiently large domains. These results are consistent with a
qualitative description of the stability of curved flame fronts
by Zeldovich et al. [7].

For some reason, the author of the paper began simula-
tions of the Sivashinsky equation with Neumann boundary
conditions, i.e., zero slope of the flame front at each end of
the domain. Of course, Neumann boundary conditions are a
more realistic description of a flame in a tube than periodic
boundary conditions. However, as solutions with Neumann
boundary conditions on [0, 7] are simply symmetric solu-
tions with periodic boundary conditions on [0,27], the au-
thor was thinking that he should obtain basically a coalescent
solution, but only between 0 and 7, with all the poles coa-
lescing at 0, leading to a cusp at this boundary. It was so
obvious that actually simulations of the Sivashinsky equation
with Neumann boundary conditions were only used origi-
nally as a test case for a new computer program. However,
stationary solutions were obtained where poles did not
all coalesce at the same position, but actually on the two
boundaries.
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It turns out (although the author was absolutely unaware
of this paper at the beginning of his work) that this type of
stationary solutions, called bicoalescent solutions, were al-
ready discovered by Guidi and Marchetti [8]. In Sec. II, we
show the bicoalescent solutions that we have obtained, which
have a nice property with Neumann boundary conditions,
they are stable. These solutions were not found in [8] be-
cause the curvature parameters studied were too large
(or equivalently, the domain width was too small). In Sec.
III, we show where the solutions of Sec. II are found in the
parameter space. We have thus to study a larger domain of
the parameter space than in [8], and discover also stationary
solutions of the interpolating type described by Guidi and
Marchetti (see Sec. III for a definition of this type of solu-
tion). These interpolating solutions, unlike those of Sec. II,
are unstable. The number of stationary solutions obtained is
so large that we have entitled Sec. III “web of stationary
solutions” and will try to convince the reader that this is not
an exageration. In Sec. IV, the evolution of the Sivashinsky
equation with noise is studied. In the case of Neumann
boundary conditions, as expected, the stable bicoalescent so-
lutions play a dominating role in the dynamics. Finally, Sec.
V contains a conclusion.

II. STABLE BICOALESCENT SOLUTIONS

The Sivashinsky equation can be written as

1
¢t+5¢)2c=v¢xx+1(¢)7 (1)

where ¢(x) is the vertical position of the front. The Landau
operator /(¢) corresponds to a multiplication by |k| in Fou-
rier space, where k is the wave vector, and physically to the
destabilizing influence of gas expansion on the flame front
(known as the Darrieus-Landau instability). v is the only
parameter of the equation and controls the stabilizing influ-
ence of curvature. The linear dispersion relation giving the
growth rate o versus the wave vector is, including the two
effects,

o= k| - vk (2)

As usual with Sivashinsky-type equations, the only non-
linear term added to the equation is %d)f In the flame front
case, this term is purely geometrical: the flame propagates in
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the direction of its normal, a projection on the vertical (y)
direction gives the factor cos(6)=1/ Vl+¢f, where 6 is the
angle between the normal and the vertical direction, then a
development valid for small slopes of the front leads to the
term %(ﬁi The Sivashinsky equation will be solved numeri-
cally on [0,27] with periodic boundary conditions, or (more
often in this paper) on [0,27] with only symmetric modes,
which corresponds to homogeneous Neumann boundary con-
ditions on [0, 7] (zero slope on both ends of the domain). All
dynamical calculations will be performed by Fourier pseu-
dospectral methods (i.e., the nonlinear term is calculated in
physical space and not by a convolution product in Fourier
space). The method used is first order in time and semi-
implicit (implicit on the linear terms of the equation, explicit
on %d)i). No particular treatment of aliasing errors has been
used.

Pole solutions ([3]) of the Sivashinsky equation are solu-
tions of the form:

a *
¢= 27/% {ln(sin()%"(t))) + ln(sin<x__§n(l) ))}’

3)

where N is the number of poles z,(¢) in the complex plane.
Actually the poles appear in complex conjugate pairs, and
the asterisk in Eq. (3) denotes the complex conjugate. In all
of the paper, only poles with a positive imaginary part will
be shown, the number of poles will also mean number of
poles with a positive imaginary part. The pole decomposition
transforms the solution of the Sivashinsky equation into the
solution of a dynamical system for the locations of the poles.
In the case of stationary solutions, the locations of the poles
are obtained by solving a nonlinear system:

2N
- E cot(zn_zl>—isgn[Im(zn)]zo, n=1,...,N,
I=1.1#n 2

(4)

where Im(z,) denotes the imaginary part and sgn is the
signum function. This nonlinear system will be solved by a
Newton-Raphson method.

Let us define here a process that will be called folding in
the rest of the paper and which allows one to create cellular
solutions starting from curved flame fronts (i.e., fronts with
only one cell in [0,27]). If a solution ¢,(x) of the Sivashin-
sky equation exists with parameter 1/v,, then ¢,(x)
=$¢1(mx) is a solution of the Sivashinsky equation with
parameter 1/v,=m(1/v,), with m an integer.

Although we have searched for stationary solutions with
periodic boundary conditions, it appears that all the solutions
we have found on [0,27] are symmetric, and thus are sta-
tionary solutions with Neumann boundary conditions, i.e.,
zero slope, on [0,7r]. In most of the cases the stationary
solutions obtained have poles at x=0, in a few cases, how-
ever, the solutions have no poles on the boundaries (i.e., only
lead to symmetric solutions with no poles at the boundary)

With periodic boundary condition, the well-known result
is that in the window 2n—-1<1/v<2n+1, n=1,2,... there
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FIG. 1. Flame shapes [x, ¢(x)] with x € [0, 7] of the (from left
to right) (5,0), (4,1), and (3,2) stationary solutions for 1/»=10.5.
All scales are the same in the x and y directions.

exists n different monocoalescent stationary solutions (all the
poles have the same real part), with 1 to n poles, and the
solution with the maximum number of poles n is asymptoti-
cally stable. For a particular value of 1/v, the number n(v)
such that 2n—1<1/v<2n+1 will be called the optimal
number of poles. All stable solutions found in this paper, for
any value of 1/v, even with Neumann boundary conditions,
have the optimal number of poles n(v).

Using, however, the Sivashinsky equation [Eq. (1)]
with Neumann boundary conditions, we obtain in each
of the intervals [2n—1,2n+1] of the parameter 1/v, not only
one asymptotically stable solution, but n+1, of the form
(I,n—=1) with [=0,1,...,n where [ poles coalesce at x=0 and
[—n coalesce at x=m. (The bicoalescent type of solutions
have been recently introduced in [8].) These solutions will
also be obtained from the nonlinear system of equations
[Eq. (4)] in Sec. III. It must be remarked that all these solu-
tions, except the monocoalescent one, are unstable for peri-
odic boundary conditions, i.e., when antisymmetric perturba-
tions are allowed on [0,27]. We have just defined here the
notation (n;,n,) that will be used in the paper for bicoales-
cent solutions with n; poles at zero, and n, at . Monocoa-
lescent solutions can be seen as a particular case of bicoales-
cent solutions and will be noted (n,0). We will encounter
also multicoalescent solutions, such as (n;,n,,n3, ...), which
means that in the interval [0,27], the poles coalesce at dif-
ferent locations: n; poles coalesce at a position on the left of
the interval, generally O, n, poles coalesce at a position with
a higher value of x, then n3 at a position with a value of x
even higher, and so on. With this notation (1,1,1) represents
a cellular solution with three cells obtained by the folding of
the (1,0) solution.

For the particular value 1/v=10.5 (five poles) the differ-
ent possible solutions are shown on [0, 7] in Fig. 1. On the
left, we have a monocoalescent (5,0) solution with five poles
at 0. The middle solution of the figure is a (4,1) solution
(four poles at x=0, one pole at x= ). Finally the solution on
the right is a (3,2) solution (three poles at 0, two poles at 7).
For an even value of the optimal number of poles (i.e., the
value of n in the interval [2n—1,2n+1]), the stable solutions
will include a solution symmetric on [0, 7], for instance, if
n=6 we have the solutions (6,0), (5,1), (4,2), and the sym-
metric (3,3) solution. In Fig. 2, we show on the same figure
the shape [x, ¢(x)] (x is the horizontal direction) of the (3,2)
solution for 1/v=10.5 with x € [0, 7] (lower part of the fig-
ure, below the horizontal segment) and the corresponding
locations of poles in the complex plane (upper part of the
figure, above the horizontal segment). The poles are indi-
cated by circles, the segment is the real axis in pole space
between 0 and 27. The important thing about this type of
figure, which will be used in the rest of the paper, is that a
pole very close to the real axis (i.e., very close to the hori-

036303-2



STATIONARY SOLUTIONS AND NEUMANN BOUNDARY....

FIG. 2. Lower part of the figure (below the horizontal segment):
flame shape [x, ¢(x)] with x € [0, 7] of the (3,2) stationary solution
for 1/v=10.5. Upper part of the figure (above the horizontal seg-
ment): corresponding pole locations in the complex plane (the seg-
ment is the real axis in the complex plane between 0 and 2, the
poles are indicated by circles). All scales are the same in the x and
y directions, both for the flame shape and for the poles.

zontal segment in the upper part of the figure) leads to a cusp
in the front shape (in the lower part of the figure), and that
the x value of the pole in the complex plane is the same as
the x value in physical space of the cusp that appears; in a
diagram like Fig. 2, the cusp and the corresponding pole are
on the same vertical line. We will see later, however, ex-
amples of poles far away from the real axis with no cusp at
the x value of the pole. This effect results from a competition
between a new pole and the poles at zero which tend to
prevent the appearance of a new cusp. It is described in a
simple way in the Appendix.

An illustration of the stability of the (3,2) stationary solu-
tion is given in Fig. 3. The initial condition used in the
Sivashinsky equation, with Neumann boundary conditions, is
exactly the (3,2) solution for 1/»=10.5. In a simulation with-
out noise, the amplitude [maximum minus minimum of
¢(x)] would simply stay constant with time, as the (3,2)
solution is stable. In order to complicate the convergence to
the (3,2) solution, we apply a noise (additive Gaussian white
noise added to the Sivashinsky equation, amplitude a=0.01,
see Sec. IV for other examples of simulation with noise, and
other explanations) when the time is smaller than 10, and
then continue the simulation without noise up to a time of
500. The stability of the (3,2) stationary solution for Neu-
mann boundary conditions is illustrated by the fact that the
shape returns quickly to this solution (observe the fact that
the final amplitude is exactly the same as the initial one).

Of the different stable stationary solutions just described,
the largest basin of attraction (with initial conditions close to

T v T T T N T
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time
FIG. 3. Amplitude vs time with Neumann boundary conditions
for 1/v=10.5. The initial condition is the (3,2) stationary solution.
A Gaussian white noise (amplitude a=0.01) is imposed on this
solution when time is smaller than 10, and is then suddenly stopped.
The solution goes back to the (3,2) solution for large times.
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a flat flame with some random perturbations) corresponds to
the most symmetric solution [i.e., the (3,2) solution for five
poles] and the monocoalescent solution [(5,0) in the previous
case]. It even seems, if one compares both types of solutions,
that the most symmetric solution has a larger basin of attrac-
tion for low values of 1/v (in the case of five poles for
instance), and the monocoalescent one a larger basin for
large 1/v. However, this result could be limited to this type
of initial conditions. Actually, in Sec. 1V, it will be shown
that in the presence of a moderate white noise added to the
Sivashinsky equation, the solution is much more often close
to the most symmetric bicoalescent solution with the optimal
number of poles than close to the corresponding monocoa-
lescent solution.

Before closing this section, let us note the analogy of the
bicoalescent solutions found here with cellular solutions ob-
served experimentally in directional solidification [9]. These
solutions, called doublets, look almost the same as the bicoa-
lescent solutions of this section. They are also stable for
some range of parameters. However, a major difference is
that there is no instability at large scale in directional solidi-
fication, and that as a result, the structure with one small
cusp, one large cusp can be repeated a number of times in the
overall doublet cellular structure. But in both cases, flames
(bicoalescent solutions) and directional solidification (dou-
blets), these type of stationary solutions are related to the
well-known phenomenon of tip-splitting of curved fronts

[10].

III. WEB OF STATIONARY SOLUTIONS

As most of the solutions of the previous section were not
found by Guidi and Marchetti, only some trivial, cellular
solutions obtained by folding, such as the (2,2) solution, we
investigate in this section higher values of 1/v than those
used in their paper [8]. As in this paper, we plot the station-
ary solutions in a diagram giving the amplitude (maximum
minus minimum value of the solution) versus 1/v.

A light version of this diagram, with only the most impor-
tant solutions, particularly the bicoalescent solutions of the
previous section, is shown in Fig. 4. The complete version of
this diagram, with all the solutions obtained by the author,
will be shown in Fig. 5. We have found it necessary to use
two figures because the different solutions are so close in
Fig. 5 that it is difficult at first sight to recognize a particular
bicoalescent solution in this figure. We hope that a compari-
son between Figs. 4 and 5 can help the reader understand
how the bicoalescent solutions of the previous section are
interconnected to the rest of the stationary solutions, particu-
larly the cellular ones. But the author knows it is not an easy
task for the reader, so for the moment, we only start with the
simplified version of the diagram. To be more precise, we
plot in Fig. 4 the basic solutions, i.e., the solutions with n
poles whose branch exists in the interval [2n—1,2n+1] of
the parameter 1/v. In this interval, these types of solutions
have thus the optimal number of poles, a necessary condition
for the solution to be stable, as explained in Sec. II.

In dashed lines in Fig. 4 can be seen the monocoalescent
solutions (n,0) which are created at 1/v=2n—-1 and are
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FIG. 4. Stationary solutions: amplitude A¢ vs 1/v [light version
with the monocoalescent solutions (n,0), the cellular solutions
(1,1,1,...), and the stable bicoalescent solutions (p,q)].

stable in the periodic case until the next solution (n+1,0) is
created. From these solutions, by a process we call here fold-
ing and which is defined in the previous section, the solu-
tions (1,1), (1,1,1),... (dotted lines) are created, as well as the
bicoalescent (1,1), (2,2), (3,3),.... The nontrivial bicoalescent
solutions of Sec. II are created starting from these symmetric
bicoalescent solutions. The hierarchy (2,1), (3,1), (4,1),
(5,1),... is created starting from the (1,1) solution obtained
by folding. The hierarchy (3,2), (4,2),... emerges from the
(2,2) solution. Finally, in Fig. 4 the solution (4,3) [first ele-
ment of the hierarchy (5,3), (6,3),...] is created from the
(3,3) solution, which means that one pole comes from infin-
ity at a given value of 1/v to create the solution.

All the solutions of the previous hierarchies are plotted as
solid black lines in Fig. 4. With the exception of the folded
symmetric solutions, all the other bicoalescent solutions of
this figure are stable when they are created, until a new so-
lution with one more pole appears. This behavior is exactly
similar to the monocoalescent solutions, the intervals of sta-
bility are also the same.

3

@LLLY

[
9]
T

=
W
T

FIG. 5. Stationary solutions: amplitude A¢ vs 1/v (complete
version of the solutions obtained by the author, including the inter-
polating solutions).
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In solid gray lines in Fig. 4 are plotted, however, another
hierarchy of solutions. This hierarchy contains solutions of
the type (2,1,1), (3,1,1), (4,1,1) apparently created exactly on
the same intervals as before. Of course this hierarchy only
leads to unstable solutions, in the periodic as well as the
Neumann case. It seems reasonable to suggest that as 1/v
increases, an infinite number of hierarchies will be created,
each starting from a suitable folded solution. The author ac-
tually suggests the following conjecture: for each value 1/v
of the control parameter with optimal number of poles n(v),
all the multicoalescent stationary solutions having the opti-
mal number of poles, labeled (ny,...,n,) for any p in the
interval 1 <p=<n(v), with =Z_n;=n(v), do exist.

Furthermore, as the amplitude of the solutions in these
hierarchies increases with 1/, it is extremely likely that so-
lutions of the (n, 1) hierarchy, for instance, will soon become
extremely close to the corresponding monocoalescent solu-
tion (n+1,0); and in the Neumann case, all the bicoalescent
hierarchies lead to stable stationary solutions. A study of the
time evolution of solutions of the Sivashinsky equation will
be reported in Sec. IV.

The previous argument suggests that there are many sta-
tionary solutions of the Sivashinsky equation. However, as
seen in Fig. 5, Fig. 4 was a very simplified version of the
diagram, with only the most important stationary solutions,
which were called basic solutions (see the explanation
above), and form a sort of skeleton of the entire structure of
the solutions. We have called this structure web of stationary
solutions for obvious reasons, all the solutions are intercon-
nected, even the number of jumps necessary to go from one
solution to one another can probably be defined, reminiscent
of the hops from router to router on the internet. It is to be
noted that the other well-known Sivashinsky-type equation,
the Kuramoto-Sivashinsky equation, also admits a huge
number of stationary solutions [11]. The author does not
even claim to have obtained in Fig. 5 something comprehen-
sive in the parameter space studied. The reader is again
warned that it is easier to look at both Figs. 4 and 5 at the
same time, to locate first the basic solutions that a particular
interpolating solution connects.

The solutions added compared to Fig. 4 are of the inter-
polating type discussed by Guidi and Marchetti. We define
here these interpolating solutions (as opposed to basic solu-
tions) as solutions whose branch does not exist in the interval
[2n—1,2n+1] of the parameter 1/v. Thus these solutions do
not have the optimal number of poles and cannot be stable
(starting from such a solution, a pole would come from in-
finity or disappear at infinity and a solution with the optimal
number of poles would be created); but in Fig. 5, it can be
seen that these interpolating solutions typically connect dif-
ferent basic solutions of the previous bifurcation diagram
(Fig. 4).

For instance, if one starts from the cellular solutions
(1,1,1,...), there exists interpolating solutions starting from
this solution and leading to all cellular solutions and the
monocoalescent solutions above. It must be noted that the
precise values of 1/wv, where these interpolating branches
appear from the cellular solutions, were calculated analyti-
cally in [12]. In the simple case of the (1,1,1) solution al-
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ready studied by Guidi and Marchetti, it is possible to move
the poles vertically in the complex plane in two different
ways in order to have an initial guess of the position of the
poles on the interpolating branches (the Newton iteration
leading to the true values of the positions of the poles). Each
interpolating solution emanating from a cellular solution can
be labeled by the way the poles move along the interpolating
branch compared to the cellular solution. This type of pole
movement along the interpolating branch (at the beginning,
where the branch is created) corresponds exactly to the way
the poles of the cellular solutions must be moved in order to
obtain an initial guess that will converge. So we have the
(+,—,%+) solution: two poles are moved upward in the com-
plex plane (i.e., their imaginary part increases, while the real
part is kept constant), one downward compared to the (1,1,1)
solution. This (+,—,+) solution will interpolate, starting
from the three cells solution, all the monocoalescent solu-
tions (1,0), (2,0), and (3,0) (this part of the diagram will be
described in more details later). We have also the (—,+,—)
solution, which, as seen in the figure, interpolates the (1,1)
solution (one pole going at infinity at this point).

If we look at a much more complicated case, the five
poles (1,1,1,1,1) solution, it seems that in order to get the
interpolating solutions, we have to consider at least three
levels of vertical movement of the imaginary part of the
poles, and, for instance, one interpolating solution has been
constructed by moving the third pole upward, the first and
fiftth downward, the second and fourth somewhere in be-
tween. Unfortunately, as shown in the case of the interpolat-
ing solutions emanating from the six poles cellular
(1,1,1,1,1,1) solution, the author’s capacities have been ex-
ceeded and neither the solution interpolating (1,0), (2,0),
(3,0), (4,0), (5,0), (6,0), neither the one interpolating
(1,1,1,1) have been found. Actually, although it is more or
less obvious that these solutions exist, the present author has
been unable to generate initial pole locations converging to
these solutions (which probably means that the author has
not understood what type of perturbation of the cellular so-
lution leads to these two branches).

If the way the monocoalescent solutions are interpolated
starting from the cellular solutions is now considered, we
prefer to start now from the monocoalescent solution, for
instance the (6,0) solution, and decrease 1/v. In Fig. 4, the
monocoalescent solutions were appearing suddenly appar-
ently from nothing, for some value of the control parameter.
On the contrary, in Fig. 5, precursors of the monocoalescent
solution exist. So if the (6,0) solution appears at 1/v=11,
what do we have exactly before?

Actually, between 1/v=11 and 1/v=10, the precursor of
(6,0) is a bicoalescent (5,1) solution, with fives poles at zero,
one at 7, however, the last one is very far from the real axis,
and does not lead to a cusp in the solution. This type of
bicoalescent solution, apart from the folded solutions like
(2,2), were the only ones obtained in Guidi and Marchetti
[they have obtained actually the (3,1) solution interpolating
(4,0) and the (2,1) interpolating (3,0)]. They are unstable
even for Neumann boundary conditions because they do not
have the optimal number of poles corresponding to the con-
trol parameter (the optimal number was defined in Sec. II).

Between 1/v=10 and 1/v=9, the solution is no more
bicoalescent, but is instead a (4,1,1) solution. Then on [8,9]
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FIG. 6. Different curved front solutions [¢(x)] with x € [0, 7]
for 1/v=10.5. A constant has been added to each solution in order
to have the same spatial mean value for all the solutions presented
in this figure.

we have a (3,1,1,1) solution, on [7,8] a (2,1,1,1,1) solution,
and as said before, we have not obtained the precursor close
to the six poles cellular solution. It is also possible to explain
the previous claim that the precursors of (6,0) interpolate all
the monocoalescent solutions with a number of poles less
than 6. At 1/v=11, one of the six poles at zero goes to
infinity, and reappears at 7 to give a (5,1) solution. At 1/v
=10, the pole at 7 and one of the poles at zero go to infinity,
and reappear later to give a (4,1,1) solution, and so on. The
fascinating point is that although all the precursors appear
different, the curve of the amplitude of all the precursors and
of the final monocoalescent solution versus the control pa-
rameter looks perfecly smooth. This, as well as the overall
structure of Fig. 5, suggests that symmetries less obvious
than those leading to the folded solutions could be at work in
the Sivashinsky equation.

Let us look now at the shape of all these precursors in
physical space. We consider as before the case »=10.5 (op-
timal number of poles: 5). We show in Fig. 6 different curved
flame solutions. The one with the higher amplitude is the
stable monocoalescent (5,0) solution. Then we have, with
smaller amplitude, a six poles (5,1) solution interpolating
(6,0). Then we have the four poles (4,0) solution, a seven
poles (4,1,1,1) solution interpolating (7,0), the three poles
(3,0) solution, and an eight poles (3,1,1,1,1,1) interpolating
(8,0). We have stopped there, as the next solutions in this list
have an amplitude very different from the original (5,0). The
interesting point is that in Fig. 6, all these solutions, which
have a very different number of poles, look relatively similar,
like subsided versions of the original monocoalescent solu-
tion, the first ones being very close to (5,0) (and will be even
closer with increasing 1/v). It seems that this is the way the
Sivashinsky equation is recovering a continuum of curved
flame solutions in the limit 1/v— %, something like the con-
tinuum of Ivantsov parabola of the related solidification
problem [10]. From the simulations of Sec. IV, it is not ob-
vious at all that these subsided unstable stationary solutions
close to the monocoalescent play any particular role in the
dynamics, except perhaps by providing ways to escape the
stable monocoalescent solution during the transient phase.
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FIG. 7. Interpolating (5,1) solution for 1/v=10.5: lower part of
the figure, flame shape, upper part of the figure: pole locations (see
Fig. 2 for a more complete description of this kind of figure).

We have shown in the successive Figs. 7-9 the solutions and
their poles for the nontrivial cases (5,1), (4,1,1,1), and
(3,1,1,1,1,1), respectively. Once again, it highlights the fact
that the presence of poles is not equivalent to the presence of
cusps, sufficiently far from the real axis, and with other poles
much closer, some poles only lead to solutions with a weaker
amplitude (see the Appendix).

Now, if we take another look at the stable bicoalescent
solutions of Sec. II, the same phenomenon as for monocoa-
lescent solutions has to be observed: the bicoalescent solu-
tions do not appear from nothing at a precise value of the
parameters, they have precursors, as seen in Fig. 5. For in-
stance, we have produced precursors of the (n, 1) hierarchy,
which also look like subsided versions of the corresponding
stable bicoalescent solutions, and will also be closer to the
original solution as 1/v increases.

Overall, the bifurcation diagram going from cellular to
curved flame fronts with all the interpolating solutions of
Fig. 5 has a structure totally unexpected. In the Sivashinsky
equation case, most of the cellular solutions are unstable.
However, the addition of a sufficient amount of gravity
(flames propagating downward) to the Sivashinsky equation
is known to stabilize these solutions and to create a complex
transition from cellular to curved fronts when gravity is var-
ied [13,14]. Tt remains to be seen if the structure of this

[«

[elie]

FIG. 8. Interpolating (4,1,1,1) solution for 1/v=10.5; lower part
of the figure, flame shape, upper part of the figure: pole locations
(see Fig. 2 for a more complete description of this kind of figure).
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FIG. 9. Interpolating (3,1,1,1,1,1) solution for 1/v=10.5: lower
part of the figure, flame shape, upper part of the figure: pole loca-
tions (see Fig. 2 for a more complete description of this kind of
figure).

transition has any relation with Fig. 5, which is likely, as a
stable stationary solution close to the bicoalescent solutions
of the present paper was found in [14]. But searching for
stationary solution with gravity is much more difficult than
with the Sivashinsky equation, as no pole decomposition ex-
ists. The author takes this opportunity to say that the insta-
bilities of curved flames observed with a very small gravity
(and with periodic boundary conditions) in [15] would prob-
ably disappear with Neumann boundary conditions, as the
most violent instabilities of this paper are created by anti-
symmetric modes.

IV. EVOLUTION WITH NOISE

In Fig. 10, we start by showing a typical time evolution
with periodic boundary conditions, and a white noise added
to the right-hand side of the Sivashinsky equation. This white
noise is Gaussian, with zero mean value and deviation one,
and we multiply it by an amplitude a. We use the parameters
a=0.01 and 1/v=11.5 (optimal number of poles: six) in the
simulations presented in this section, with periodic and Neu-
mann boundary conditions. In Fig. 10 is plotted, for periodic
boundary conditions, the amplitude of the front versus time,
the initial condition being a five poles solution which is not
stationary for this value of the control parameter, and leads to
the initial transient.

4 T T T T T T
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L 433

: 1 : ! . | . | .
1() 100 200 300 400 500
time

FIG. 10. Amplitude vs time with periodic boundary conditions
for 1/v=11.5 and a=0.01.
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FIG. 11. Amplitude vs time with Neumann boundary conditions
for 1/v=11.5 and a=0.01.

After this transient, the solution oscillates violently be-
tween low and high values of the amplitude. The peak values
correspond to curved front solutions, with the poles being
apparently almost monocoalescent, but with an amplitude
much higher than the monocoalescent (6,0) stationary solu-
tion. The values of the amplitudes for the stationary solutions
(6,0), (5,1), (4,2), and (3,3) are all indicated in the figure by
gray lines, so that the reader can compare. The low values
correspond to shapes with a new cusp formed in the flat part
of the front. For the lowest values of the amplitude, this new
cusp leads almost to a bicoalescent solution, but with again
an amplitude which seems higher than the (5,1) or (4,2) sta-
tionary solution. The solution never comes close to the (3,3)
solution, which on [0,27] is a two cells solution. Further-
more, other low values of the amplitude correspond to a cusp
that develops without being exactly centered. Anyway, the
dynamics is dominated in the periodic case by antisymmetric
perturbations. Even if the new cusp formed by the perturba-
tion is correctly centered when it forms, it will ultimately
move on one side and will be swallowed by the main cusp.
This of course modifies the position of the main cusp, and
leads to the very high peak amplitudes observed. This anti-
symmetric dynamics is forbidden for Neumann boundary
conditions, so let us see now what happens in this case.

The situation is shown in Fig. 11 for the same control
parameter and noise amplitude as in the periodic case. Before
discussing this figure in detail, the overall impression is that
the signal obtained is much less turbulent. The different sta-
tionary solutions for this value of the control parameter are
also indicated by gray lines.

The first point to note is that in this figure, except in the
initial transient, the front is never monocoalescent. Even for
the peak values obtained, where the amplitudes obtained
sometimes seem close to the (6,0) amplitude, we stress that
all the solutions obtained at the peak value are bicoalescent
and not monocoalescent. On the contrary, the solution seems
often close to the different bicoalescent (3,3), (4,2), and (5,1)
solutions. We show in Fig. 12 a comparison between the
solution at time 410.555 in Fig. 11 (dashed dotted line),
where the amplitude has a local minimum very close to the
amplitude of the (4,2) solution, and the shape of the (4,2)
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— (4,2) stationary solution
--_solution at time 410.555

FIG. 12. Comparison of the solution at time 410.555 (dashed
dotted line) in Fig. 11 (Neumann boundary conditions 1/v=11.5
and a=0.01) with the stationary (4,2) solution for 1/v=11.5
(solid line).

solution for 1/v=11.5 (solid line). The agreement between
both solutions is excellent in this case. For very small values
of the noise amplitude (not shown here) the solution (with
Neumann boundary conditions) actually oscillates around the
(3,3) solution, without making jumps to any of the other
stable stationary solutions. As the noise used here is Gauss-
ian, it is not impossible, however, that jumps could occur as
extremely rare events (for very small noise amplitudes), and
could be observed in very long simulations.

The value of the noise taken here a=0.01, although mod-
erate, is already sufficient to produce jumps in the amplitude,
often actually jumps between the bicoalescent steady solu-
tions. The very low values of the amplitude in Fig. 11 corre-
spond to shapes with three cusps in [0,7], one on each
boundary, and one in the middle. For this value of the control
parameter, the middle cusp is always smaller than the cusps
on the side. It is the author’s opinion that the lowest values
of the amplitude correspond to a shape close to an unstable
stationary solution, which has not been found in Fig. 5. As
the solution does not need to be symmetric on [0, ], the
mechanism for the disappearance of the middle cusp is rela-
tively similar to the same one on [0,27] in the periodic case,
the middle cusp moves on one side and is swallowed by one
of the two main cusps. The difference here with the periodic
case is that the main cusp does not move after having swal-
lowed the small cusp and stays on the boundary.

After the low values of the amplitude comes a transient,
where the amplitude very quickly grows towards a peak
value, which is a very unstationary bicoalescent solution.
Depending on the noise, the shape will then often come back
close to a stationary bicoalescent solution. Finally, it seems
that higher noise amplitudes or larger 1/v (the type of signal
obtained is very sensitive to this last value) lead to more
turbulent curves of amplitude versus time with more jumps
and more time spent in the unstable low amplitudes solutions
and the very unstationary peaks.

To conclude this section, let us compare the behavior with
Neumann and periodic boundary conditions. For small v, the
stable stationary solutions are very sensitive to external noise
in both cases. As is well-known in the periodic case (and in
this respect, the situation is very similar with Neumann
boundary conditions), small perturbations are continuously
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created on the front. But the difference lies in the symme-
tries. In the periodic case, the stable stationary solutions are
the monocoalescent solution with the optimal number of
poles, and the continuum of its lateral translations, all neu-
trally stable because of this symmetry. The noise keeps dis-
turbing the monocoalescent solution, but another solution of
the continuum of monocoalescent solutions (with the optimal
number of poles) is also continuously recreated. With Neu-
mann boundary conditions, the stable solutions are now the
bicoalescent solutions with the optimal number of poles. The
perturbations created by the noise now serve to explore the
different stable bicoalescent solutions, causing jumps be-
tween two different bicoalescent solutions; but with Neu-
mann boundary conditions, all stable solutions are not cre-
ated equal, some are easier to destabilize than the others. As
seen previously, for instance, the monocoalescent solution is
more sensitive to noise. As a result, during the time evolu-
tion, the front will almost never be close to the monocoales-
cent solution for small » (which is just the opposite of the
behavior with periodic boundary conditions).

V. CONCLUSION

To summarize this paper, bicoalescent solutions of the
Sivashinsky equation, stable in the Neumann case, have been
obtained. They have found their location in the incredible
structure of the web of stationary solutions. Simulations for
moderate noise show that the evolution is controlled by
jumps between stationary solutions. The author would like to
insist here on the most important point of this paper: evolu-
tion with periodic (controlled by antisymmetric perturba-
tions) and Neumann boundary conditions is very different.
The Neumann boundary conditions are more realistic, al-
though in the presence of heat losses, the flame is no more
perpendicular to the wall (and is of course three dimen-
sional). Finally, it is likely that new analytical studies of the
Sivashinsky equation should be possible: even if the equa-
tion is now almost 30 years old, many things remain to be
explained.

APPENDIX: HOW FAR MUST A POLE BE LOCATED
FROM THE REAL AXIS TO CREATE A NEW CUSP?

In this appendix, we will try to explain in a very simpli-
fied way that adding a new pole to a monocoalescent solu-
tion does not necessarily create a new cusp if the isolated
pole is located too far from the real axis. Let us consider the
following idealized situation: we have a monocoalescent sta-
tionary solution with poles located at 0. A new pole at 7 is
added to this solution, without moving any of the other poles
coalesced at 0. The front with the new pole is no more sta-
tionary, but in this appendix, we try to answer the following
question: at which distance of the new pole to the real axis is
a new cusp created? We call this distance y, and its value
will be measured numerically for different values of 1/v,
with an optimal number of poles. In real situations the pres-
ence of the pole at  modifies the position of the poles at 0,
particularly the poles located far from the real axis. We ne-
glect this effect as we just want to have a reasonable order of
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magnitude of the value of y, leading to a new cusp.

It turns out that the value of y. can be computed analyti-
cally in the continuous approximation introduced by Thual
Frisch and Hénon [3]. Instead of summing on every pole
located at 0, this discrete sum is replaced by an integral, with
a pole density p(y) (v being the vertical coordinate in the
complex plane) given by (see [3] for a derivation)

1 ] )
= —— In{ coth — |.
p) v ( 4
The value of the slope of the front ¢, corresponding to the

coalesced poles at 0 (in the continuous approximation) and to
the isolated pole at 7 is given by

¢ (x)=—vP f p(y)cot(x —2iy )dy -v cot(j%_iyl)

(x—ﬂ'+iy1>
—veotl ——— |,
2

where P denotes the principal value of an integral going
from —o0 to +0, the conjugated isolated poles being located
at m+iy,. As a criterion for the appearance of a new cusp, we
choose the natural condition ¢, (x=)<0. The value of ¢,,
at this point is created by the competition between the coa-
lesced poles at 0, which tend to prevent the creation of the
new cusp, and the isolated pole (and its complex conjugate)
which has the opposite effect. With the previous forms of the
slope and the pole density, we obtain

o ol
Pulr=m) =P f 27 ln(Com<4 cost?(572) ™

v
sinh?(y,/2)

Integrating by parts, the antiderivative of the function un-
der the integral sign is

— continuous approximation of y
A

0.5

0 10 20 30 40 50 60 70 80 90 100 110
1/v

FIG. 13. Comparison of the values of y, (maximum distance to
the real axis of a pole at 7 to create a new cusp) obtained numeri-
cally with a theoretical value obtained by using the continuous ap-
proximation of Thual Frisch and Hénon.
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# {ln(coth( %) )tanh(u) + 2 arctan(exp(u))

with u=y/2, leading finally to

buli=m) ==
X=T)=———""H7"".
o a  sinh?(y,/2)

In this formula, the term 1/7r comes from the poles at 0,
the other term from the isolated pole at 7. As said before,
these two terms have different signs. The condition ¢, (x
=) =0 finally leads to the value of y,=y, corresponding to
the appearance of a cusp, which is

y.=2 arcsinh(\r’;/).
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The cusp only appears if y; <y.. We now compare in Fig.
13 this formula to the values of y. measured numerically for
1/v=10 (five poles at 0, one at ), 20 (10+1 poles), 40, 60,
80, and 100 (50+1 poles), each time with the optimal num-
ber of poles coalesced at O and one extra pole at 7. The solid
curve is the previous formula obtained in the continuous ap-
proximation, the circles are the values measured numerically.
It can be seen that the agreement is good. It is even more
surprising if we think that for 1/v=10 we have only five
poles at 0 and the continuous approximation for the second
order derivative at 7 works correctly, the numerical point is
just slightly below the theoretical curve. Of course, this re-
sult is obtained in the framework of an illustrative model
where all the positions of the poles are kept fixed, but it
serves to justify the fact that in the presence of other poles, a
new pole at a different x coordinate needs to be sufficiently
close to the real axis to create a new cusp.
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